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Abstract

The aim of this article is to study two distinct cases of utility representations where the error
functions are assumed to display characteristics di0erent than usual. These characteristics depend
respectively on the feasible set and the two alternatives compared. Thus, in the 1rst case the
error functions are additive and in the second they are multiplicative.

Our study of additive error functions shows that a very narrow class of choice functions can
be represented in this form. Also we introduce a new class of binary relations, called simple
semiorders, to 1ll the relevant gap in the literature. As for the case of multiplicative error
functions, we study the cases where the error function is directly and inversely proportional
to the utility function. We show that these classes of binary relations display characteristics of
interval orders, semiorder, or regular semiorders depending on the case studied.
? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The problem of describing human behavior through numerical representation, re-
vealed preference and di0erent conditions of rationality has become a popular area of
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research since the famous work by Samuelson [16] (more recent work includes that of
Cherno0 [10], Sen [17] and Suzumura [18]). Arrow [9] showed that choice is equiva-
lent to the selection of undominated alternatives on some weak order according to the
maximization of a utility function, and that the corresponding choice function satis1es
the condition, which is often referred to as Arrow’s choice Axiom.
Amstrong [6–8] drew attention to the fact that indi0erence relations are not transitive

because the human mind is not necessarily capable of perfect discrimination, and intro-
duced the notion of semiorders into economic theory. Yet semiorder was axiomatized
in a more precise way by Luce [14] who introduced a new numerical representation
for semiorders with a constant error. However, one limitation of these studies is that
they all worked with constant errors. This idea was developed in many publications,
the most recent of which are Fishburn [13] and Pirlot and Vincke [15]. Agaev and
Aleskerov [3] and Aizerman and Aleskerov [4] take into consideration generalized
models of interval choice in which the error functions are dependent on the feasible
set of alternatives. Two cases of numerical representation with speci1cally de1ned error
functions are analyzed in this paper. The 1rst case of error functions depends on the
set of feasible alternatives. This is an additive function that depends on the alternatives
separately. The second case of error functions depends on compared alternatives x and
y. We also assume that this function is multiplicative and we consider the cases when
the error function �(x) depends on the utility function u(x).
In Section 2, we give our results about representation of choice via a utility function

and an additive error function that depends on the feasible set of alternatives. Section 3
contains results of the numerical representation of binary relations with a multiplicative
error function depending on compared alternatives x and y. All proofs are given in
Appendix A.

2. Choice representable via a utility function and an additive error function

Here we explore the 1nite set A of alternatives. A choice function is denoted as
C(·) where the point in the brackets stands for some non-empty set X ⊆ A. As usual
it is assumed C(X ) ⊆ X for any X . The utility function u(·) is a real-valued function
de1ned on the set A. A binary relation P on a set A is a set of ordered pairs (x; y) with
x; y∈A. We write xPy to mean that (x; y)∈P. Similarly, x MPy means that (x; y) �∈ P,
i.e., (x; y) is not an element in P.

De�nition 1. A choice function C(·) is said to have a numerical representation via a
utility function with an error if there exist functions u and � such that ∀X ⊆ A

C(X ) = {x∈X |@y∈X s:t: u(y)− u(x)¿�}: (1)

This means that there exists an insensitivity zone (or measurement error) � in which
these alternatives can be considered indi0erent in terms of choice even if their utilities
are di0erent. For example, although the distinction between one and three cubes of
sugar in a co0ee makes a di0erence in taste, we would not be able to di0erentiate
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between the tastes of one and two cubes or between two and three cubes. In other
words, we are indi0erent between n and n+1 cubes, yet we have a de1nite preference
between one and ten cubes.
Choice functions that have a numerical representation with error functions of the

type �= �(x; y; X ); �= �(y; X ), and �= �(X ) were investigated by Agaev and Aleskerov
[3], and Aizerman and Aleskerov [4]. In this section we build on this literature by
studying a special case of the error function �= �(X ), namely, the case of an additive
error function �. The example below shows that there are choice functions which cannot
be represented as in (1) with an error function of the form �= �(X ).
For the case of an error function of the form �= �(X ), (1) becomes ∀X ⊆ A; X �= ∅,

C(X ) = {x∈X |@y∈X s:t: u(y)− u(x)¿�(X )}: (2)

De�nition 2. A choice function C(·) is said to be rationalizable by a binary relation
P if ∀X ⊆ A; X �= ∅;

C(X ) = {x∈X |@y∈X s:t: yPx}:

Example 1. There exists a binary relation P which rationalizes a choice function that
cannot have a numerical representation as in (2). Let A= {a; b; c; d} and consider the
binary relation P={(a; b); (c; d)}. Let C(·) be the choice function which is rationalizable
by P. Consider the sets {a; b; d} and {b; c; d}. It is seen that C({a; b; d}) = {a; d} and
C({b; c; d}) = {b; c}. Since d belongs to the choice set from {a; b; d} but b does not;
then

∃x∈{a; b; d} s:t: u(x)− u(b)¿�({a; b; d})
and

∀x∈{a; b; d}; u(x)− u(d)6 �({a; b; d}):
These inequalities imply u(b)¡u(d). However u(b)¿u(d) is obtained when the set
{b; c; d} is considered. Thus; C(X ) cannot be represented as in (2).

De�nition 3. A function � : 2A → R is said to be additive if ∀X ⊆ A

�(X ) =
∑
x∈X

�(x):

The additivity property states that the value of the error �(X ) is the sum of the error
values �(x) through X . If �(x) is assumed to be non-negative the error value of the set
X increases along with its number of elements. It means that the insensitivity zone may
increase by adding elements to the original choice set. As a result of this speci1cation
of the measurement error of the set X , an element that could not be chosen under the
original set can now be selected under the expanded set.
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Let us consider the representation of choice functions via a utility function and an
additive error function. Then (2) becomes ∀X ⊆ A

C(X ) =

{
x∈X |@y∈X s:t: u(y)− u(x)¿

∑
x∈X

�(x)

}
: (3)

Below are the de1nitions of special types of binary relations (for detailed studies
see e.g. [14,11,4, pp. 95–96]).

De�nition 4. (a) A binary relation P is called a weak bi-order if for any distinct
x; y; z; w∈A

xPy ∧ zPw ⇒ xPw ∨ zPy ∨ yPw ∨ wPy ∨ wPw ∨ yPy

and

x1Px2Px3 : : : ::xrPx1 ⇒∃i∈{1; 2; : : : ; r} (where xr+1 = x1)
xi+1Pxi ∨ xiPxi:

(b) A binary relation P is called a bi-order if ∀x; y; z; w∈A

xPy ∧ zPw ⇒ xPw ∨ zPy:

(c) An irreOexive bi-order P is called an interval order.
(d) A bi-order which satis1es the condition ∀x; y; z; w∈A

xPyPz ⇒ xPw ∨ wPz

is called a coherent bi-order.
(e) An irreOexive coherent bi-order P is called a semiorder.
(f) An irreOexive binary relation P is called a weak order if for any distinct x; y; z ∈A

xPy ⇒ y MPx

and

xPy ⇒ xPz ∨ zPy:

(g) A weak order P is called a linear order if for any distinct x; y∈A; xPy ∨ yPx.

Let WBO, BO, IO, CBO, SO, WO and LO denote the set of the weak bi-orders,
bi-orders, interval orders, coherent bi-orders, semiorders, weak orders and linear orders,
respectively. It can easily be seen that CBO ⊂ BO ⊂ WBO; SO ⊂ IO ⊂ BO; SO ⊂
CBO and LO ⊂ WO.

Example 2. Let A= {a; b; c; d; e} and consider the semiorder

P = {(a; b); (a; c); (b; c); (a; d); (a; e)}:

The choice function rationalizable by the semiorder P cannot be represented as in
(3). To see this, we know that for all x∈A �(x)¿ 0 since P is irreOexive. Then we
get u(a)¿u(b)¿u(c). The next step is going to show that u(b)¿u(d); u(e)¿u(c).
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Assume that u(b)6 u(d), then we have �(c) + �(d)¿ u(d) − u(c)¿
∑

x∈{b;c;d} �(x)
since C({c; d})={c; d} and C({b; c; d})={b; d}. It gives us 0¿�(b) which contradicts
the fact that �(x)¿ 0 for all x∈A. So we get u(b)¿u(d). To show u(d)¿u(c),
assume that u(d)6 u(c). Then we get u(b) − u(d)¿ u(b) − u(c)¿

∑
x∈{b;c;d} �(x)

since c �∈ C({b; c; d}) and u(b)¿u(d). This contradicts C({b; c; d})={b; d}. Since c �∈
C({b; c; d; e}) and C({b; d})={b; d}; (∑x∈{b;d} �(x))+u(d)¿ u(b)¿ (

∑
x∈A={a} �(x))+

u(c). Then by C({c; d})={c; d}, we have �(c)+�(d)+u(c)¿ u(d)¿�(c)+�(e)+u(c).
Therefore, we get �(d)¿�(e). When we replace d with e, we will have �(d)¡�(e)
which contradicts our previous result.
The example has shown that there exists a choice function rationalizable by a

semiorder which cannot be represented as in (3). However, it can easily be seen that a
choice function which is rationalizable by a weak order can be represented as in (3).
Thus, the question arises: Is it possible to 1nd a class of binary relations which is a
proper subset of the semiorders such that the choice functions rationalizable via these
binary relations can be represented as in (3)?
Before we state our next result, let us construct the partitions which de1ne the

structure of an interval order (see, e.g. [12]).
The strong intervality condition (∀x; y; z; w∈AxPy∧ zPw ⇒ xPw∨ zPy) implies that

∀x; y; L(x) ⊆ L(y) or L(y) ⊆ L(x), where L(x) is the lower contour set of x in P,
i.e., L(x)= {y∈A |xPy}. IrreOexivity indicates that there is a chain with respect to the
lower contour sets, i.e., L(x1) ⊂ L(x2) : : : :L(xn−1) ⊂ L(xn).

Let us construct the sets

Ik = {x∈A |L(xk) = L(x)};
where k = 1; : : : ; n (n is 1nite by the 1niteness of A). Ik is not empty for any k
since xk ∈ Ik by construction. Clearly, the system {Ik}n1 is a partition of the set A, i.e.,⋃n

k=1 Ik = A; Ik ∩ Il = ∅ when k �= l. Now construct another family of non-empty sets
{Jm}n1, as follows:

J1 = L(x2) \ L(x1);

J2 = L(x3) \ L(x2);

...

Jn−1 = L(xn) \ L(xn−1);

Jn = A

∖
n−1⋃
m=1

Jm :

Clearly, the system {Jm}n1 is a partition of the set A, i.e.,
⋃n

m=1 Jm = A; Jk ∩ Jm = ∅
when k �=m. Then any interval order P can be represented as

P =
n⋃

k=2

[
Ik ×

k−1⋃
m=1

Jm

]
:
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We now introduce a special type of semiorders by restricting the number of elements
in the partitions Ik ∩ Jm.

De�nition 5. A semiorder will be called a simple one if

|Ik ∩ Jm|6 1 if |k − m|6 1;

|Ik ∩ Jm|= 0 otherwise;

where {Ik}n1 and {Jm}n1 are the partitions of A.

“Simplicity” implies that not only Ik ∩ Jm = ∅ for k6m − 2 but also Ik ∩ Jk and
Ik ∩Jk+1 are at most singletons; this also implies that the cardinality of Ik is at most 2.
Moreover, in a simple semiorder, at most three elements can be indi0erent. On Figure
1, two semiorders are shown: a simple one, and one that is not simple. The “rectangles”
represent Ik while the “circles” represent Jm, separating Ik ∩ Jk from Ik ∩ Jk+1.
It is worth mentioning here that simple semiorders are a generalization of linear

orders: when Ik = Jk for all k, a simple semiorder turns out to be a linear order.
However, in contrast to semiorders, simple semiorders are not a generalization of weak
orders since the indi0erence classes of a simple semiorder are singletons.

Theorem 6. A choice function which is rationalizable by a simple semiorder P can
be represented as (3).

Example 3. Let A = {a; b; c} and the utilities and the errors be as in the following
table:

u(·) �(·)
a 2 0
b 1 −1
c 0 2

It can easily be seen that there is no binary relation P that rationalizes the choice
function representable in the form of (3) with the utility and error functions given
above. Therefore; the choice function representable in the form (3) is not rationalizable
by any binary relation. Hence; the inverse statement of Theorem 6 is not true.

The main idea of the theorem is to 1nd a class of binary relations such that the
choice functions rationalizable by these binary relations can be represented with the
error function �(X ) that is the sum of the error values �(x) through X . In other words,
�(X ) may change as the number of elements which belong to X is altered. When an
individual has a lot of alternatives to choose from, it will be diTcult to make a decision
among them. The representation with a constant error cannot capture these kind of sit-
uations. Also we showed that there are some choice functions that are rationalizable by
a semiorder P that cannot be represented as in (3). Is it possible, then, to 1nd a class of
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Fig. 1.

binary relations which is a proper superset of the simple semiorders such that the choice
functions rationalizable by these binary relations can be represented as in (3)? We still
do not know the answer to this question. Theorem 6 only shows that the representation
in the form of (3), an additive error function, arises when the corresponding binary
relation is a simple semiorder.
To conclude this section, we construct a generalization of the interval orders to

explore if we can 1nd a class of binary relation represented by (3).
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De�nition 7. An interval order will be called a simple one if

|Ik ∩ Jm|6 1;

where {Ik}n1 and {Jk}n1 are the partitions of A.

Remark 1. A choice function which is rationalizable by a simple interval order P
cannot be represented as in (3). Let A= {a; b; c; d; e}; and consider the simple interval
order UP= {(a; b); (a; c); (b; c); (a; e)}. The choice function rationalizable by the interval
order UP cannot be represented as in (3).

To see this, we know that �(x)¿ 0 for all x∈A since P is irreOexive. And we have
�(a)+�(c)+2�(d)¿ u(a)−u(c)¿

∑
x∈A �(x) since C({a; d})={a; d}; C({c; d})={c; d}

and c �∈ C(A). It gives us �(d)¿�(b)+ �(e). At the same time, we have �(b)+ �(c)+
2�(e)¿ u(b)−u(c)¿

∑
x∈{b;c;d;e} �(x) since C({b; e})={b; e}; C({c; e})={c; e}; and

c �∈ C({b; c; d; e}). It gives us �(d)¡�(e) which contradicts the fact that 06 �(b).

3. Numerical representation of binary relations with multiplicative error functions

We begin this section by providing the de1nition of a numerical representation of a
binary relation via a utility function with an error. Then we discuss brieOy the existing
results in the literature.

De�nition 8. A binary relation P is said to have a numerical representation via utility
function with an error if there exist two functions u(·) and � such that

xPy ⇔ u(x)− u(y)¿�: (4)

Depending on the form of the function � one can obtain di0erent types of binary
relations P in (4). If �=constant¿ 0, then P is a semiorder [14]. If �=�(x)¿ 0, then P
is an interval order [12]. If we omit the restriction for � to be non-negative, then one can
obtain more general classes of relations—coherent bi-orders and bi-orders, respectively
(see [11]). Moreover, any of the above-mentioned relations can be represented as in
(4) with appropriate functions u and �.
In Aleskerov and Vol’skiy [5], Agaev and Aleskerov [3], Abbas and Vincke [2],

Abbas [1], and Aizerman and Aleskerov [4] the model studied is one in which � in
(4) depends on both comparable alternatives x and y. It has been shown that if � is
non-negative, then any non-cyclical binary relation can be represented in this way, and
if � is not restricted, then any binary relation has such numerical representation. In the
case where the error function depends additively on �(x) and �(y), i.e.,

�1(x; y) = �(x) + �(y);

the corresponding P is an interval order (see [4]).
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Now we are interested in the case where the error function is multiplicative, i.e.,

�1(x; y) = �(x)�(y)

and we consider the function � to be dependent in a di0erent way on the value of the
utility function u.
We will consider two cases: one, in which the error value decreases when the utility

value increases; this corresponds to the case when alternatives with small utility values
are considered to be similar. The second case is where the error value increases along
with the utility values; this corresponds to the case when alternatives with high utilities
are considered as similar. We can exemplify these two cases in the following way: in
the 1rst case, an aWuent man does not feel the need to di0erentiate between the prices
in the supermarket and the local bazaar, the latter being comparatively cheap. On the
contrary, in the second case, a poor man would not to be able to distinguish between
two luxury cars because of their inaccessibility.

Theorem 9. Let P have a numerical representation with an error such as that in (4);
the utility function u(·) be positive; the error function �1(·; ·) be multiplicative; i.e.;
∀x; y �1(x; y) = �(x)�(y); and the function �(x) depend on u(x) in such a way that
�(x) = �=u(x) with �¿ 0. Then P is an interval order.

Theorem 9 shows the conditions for P to be an interval order. However, proving
the inverse statement remains an open problem.

Example 4. An interval order P with a numerical representation as stated in Theorem
9 is not necessarily a semiorder. This can be shown by the following example: let
u(x) = 9; u(y) = 7; u(z) = 4; u(w) = 1 and �2 = 80. Then it is easily seen that xPyPz
but x MPw and w MPz.

Theorem 10. Let P have a numerical representation with an error such as that in
(4); the utility function u(·) be positive; the error function �1(·; ·) be multiplicative;
i.e.; ∀x; y �1(x; y)= �(x)�(y); and the function �(x) depend on u(x) in such a way that
�(x) = �u(x) with �¿ 0. Then P is a semiorder.

The inverse statement of Theorem 10 has been proved only for a special sub-class of
the class of semiorders referred to as regular semiorders. Before introducing those rela-
tions we 1rst recapitulate interval orders (hence, semiorders), which use two partitions
of the set A.
Any semiorder P can be represented as

P =
n⋃

k=2

[
Ik ×

k−1⋃
m=1

Jm

]
;

where {Ik}n1 and {Jm}n1 are the partitions of A (see Section 2).
Now we can introduce the regular semiorders.



190 F. Aleskerov, Y. Masatlio�glu / Discrete Applied Mathematics 127 (2003) 181–197

De�nition 11. A semiorder will be called “regular” if

Ik ∩ Jm = ∅ if k6m− 2;

where {Ik}n1 and {Jm}n1 are the partitions of A.

The following lemma describes a category of regular semiorders.

Lemma. Let P be a semiorder with the property Ik ∩ Jm �= ∅ for any k = 1; : : : ; m.
Then Ik ∩ Jk = ∅ for any k6m− 2.

Proof. Let u∈ Im ∩ Jm; v∈ Im−1 ∩ Jm−1 and w∈ Im−2 ∩ Jm−2. It is easy to show that
uPvPw. Suppose there is x∈ Im−2 ∩ Jm; since x∈ Jm; we have u MPx; similarly; from
x∈ Im−2; we get x MPw. This contradicts the fact that P is a semiorder. Supposing there
is x∈ Ik ∩ Jm for k ¡m− 2 leads to the same contradiction.

For this type of semiorders the inverse statement of Theorem 10 turns out to be
true. However, this remains an open question for a semiorder.

Theorem 12. Any regular semiorder P has a numerical representation with an error
such as that in (4); the utility function u(·) being positive; the error function �1(·; ·)
being multiplicative; i.e.; ∀x; y �1(x; y) = �(x)�(y); and the function �(x) depends on
u(x) in such a way that �(x) = �u(x) with �¿ 0.

Example 5. Let A={a; b; c; d} and consider the interval order P={(a; b); (b; d); (a; d)}.
This interval order cannot have a numerical representation with an error such as that in
(4) where the utility function u(·) is positive; the error function �1(·; ·) is multiplicative;
i.e.; ∀x; y �1(x; y) = �(x)�(y); and the function �(x) depends on u(x) such that �(x) =
�u(x) with �¿ 0. Since P is an irreOexive binary relation; without loss of generality we
can assume that the utility value of each alternative is non-negative. bPd∧c MPd ⇔ u(b)−
u(d)¿�2u(b)u(d) and u(c) − u(d)6 �2u(c)u(d) ⇔ (u(b) − u(d))=�2u(b)¿u(d)¿
(u(c) − u(d))=�2u(c) ⇔ u(b)¿u(c). This implies that u(a) − u(b)¡u(a) − u(c).
We have �2u(a)u(b)¡�2u(a)u(c) since aPb ∧ a MPc. So we 1nd u(b)¡u(c) which
contradicts the previous result.

Remark 2. It can easily be shown that any weak order admits the representation in
(4) with a multiplicative error function and �(x) = �u(x) or �(x) = �=u(x). Indeed; let
us consider the error function of the form �(x) = �u(x). The weak order P is de1ned
by the partition {Zm}n1 such that

xPy i0 x∈Zi; y∈Zj; and i¿ j:

If we choose � to be equal to 1=n, and u(x) to be equal to i if x∈Zi, then for two
elements in di0erent classes Zi and Zj; � will be less than 1, and for two elements
from the same class, � will be equal to 1.
For the second type of error function one can choose � to be equal to 1. It can be

shown that such a function � satis1es the necessary requirement.
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Appendix A

Proof of Theorem 6. For each x∈ Ik ∩ Jm set the value of u to

u(x) =

{
2k+1 if k = m

3 · 2k otherwise

}

and the error function � to

�(x) =

{
0 if k = m;

2k otherwise

}
:

Consider a choice function C(X ) rationalizable by a simple semiorder P: Denote by
Ĉ(·); the choice function that is represented in (3) with u(·) and �(·) as de1ned above.

Let us prove that Ĉ(X ) = C(X ) for all X ⊂ A:
If x∈C(X ); then @y∈X s.t. yPx:
Let x∈ Ik ∩ Jm: Since P is simple, m= k or m= k + 1.
i) If x∈ Ik ∩ Jk+1; then u(x) = 3 · 2k : If u(y)− u(x)¡ 0; we are done. So we need

to consider two cases to show that ∀y∈X; u(y)− u(x) ≤ Y
z∈X

�(z). If y∈ Ik+1 ∩ Jk+1;

then u(y)− u(x) = 2k+2 − 3 · 2k = 2k = �(x) ≤ Y
z∈X

�(z): If y∈ Ik+1 ∩ Jk+2; then u(y)−
u(x) = 3 · 2k+1 − 3 · 2k = 3 · 2k = �(x) + �(y) ≤ Y

z∈X
�(z):

ii) If x∈ Ik ∩ Jk ; then u(x) = 2k+1: The maximal value for u(y) with y∈X ⊆ k∪
m=1

Jm

is eventually attained when y∈ Ik ∩ Jk+1 since then u(y) = 3 · 2k : In such a case
u(y)− u(x) = 3 · 2k − 2k+1 = 2k = �(y) ≤ Y

z∈X
�(z): In all other cases u(y)− u(x)¡ 0 ≤

Y
z∈X

�(z): Therefore x∈ Ĉ(X ):

If x∈X and x �∈ C(X ); then ∃y∈X s.t. yPx; if there are several such y’s take the
one for which u(y) is maximal. Now let us prove that u(y)− u(x)¿ Y

z∈X
�(z):

Since P is a simple semiorder, y∈ Ik ∩ Jm with m = k or m = k + 1. yPx implies
x∈ Ik−j; j ≥ 1 and x∈ Jm−l; l ≥ 1: Moreover, y∈ Ik and yPx imply x cannot belong to
Jk since Jk = L(xk+1) \ L(xk): Hence, if y∈ Ik ∩ Jk+1; x �∈ Ik−1 ∩ Jk :
i) If y∈ Ik ∩ Jk ; then u(y) = 2k+1; the worst case for x is x ∈ Ik−1 ∩ Jk−1; hence

u(x) = 2k : We then have: u(y)− u(x) = 2k+1 − 2k = 2k and �(X ) = Y
z∈X

�(z) ≤ 21 + 0+

22 + :::::::+ 2k−1 + �(y)︸︷︷︸
0

= 2k − 2¡ 2k :

ii) If y∈ Ik ∩ Jk+1; then u(y)=3 · 2k : Since x �∈ Ik−1 ∩ Jk ; the worst case we have to
consider is x∈ Ik−1∩Jk−1; hence u(x)=2k : We then have: u(y)−u(x)=3·2k−2k=2k+1

and �(X ) = Y
z∈X

�(z) ≤ 21 + 0 + 22 + ::::::: + 2k−1 + �(y)︸︷︷︸
2k

= 2k+1 − 2¡ 2k+1: Therefore,

in both cases x �∈ Ĉ(X ):
Consequently, for all x in X and ∀X ∈ 2A Ĉ(X ) = C(X ):



192 F. Aleskerov, Y. Masatlio�glu / Discrete Applied Mathematics 127 (2003) 181–197

Proof of Theorem 9. (i) P is irreOexive. Since �1(x; x)= �(x)�(x)= (�=u(x))(�=u(x))=
�2=u2(x)¿ 0; then �1(x; x)¿ 0 = u(x)− u(x). Thus x MPx.
(ii) P satis1es strong intervality. Assume on the contrary that xPy∧zPw∧x MPw∧z MPy.

Then

u(x)− u(y)¿
�

u(x)
�

u(y)
; (A.1)

u(z)− u(w)¿
�

u(z)
�

u(w)
; (A.2)

u(x)− u(w)6
�

u(x)
�

u(w)
; (A.3)

u(z)− u(y)6
�

u(z)
�

u(y)
: (A.4)

Adding (A.1)–(A.4) we obtain
�

u(x)
�

u(y)
+

�
u(z)

�
u(w)

¡
�

u(z)
�

u(y)
+

�
u(x)

�
u(w)

:

Multiplying both sides by u(x)u(y)u(z)u(w)=�2, we obtain

u(x)u(y) + u(z)u(w)¡u(x)u(w) + u(y)u(z):

Then u(z)u(w)− u(y)u(z)¡u(x)u(w)− u(x)u(y), so

u(z)(u(w)− u(y))¡u(x)(u(w)− u(y)): (A.5)

Moreover, (A.1) and (A.3) imply

u2(x)u(y)− u(x)u2(y)¿�2¿ u2(x)u(w)− u(x)u2(w); (A.6)

(A.2) and (A.4) imply

u2(z)u(w)− u(z)u2(w)¿�2¿ u2(z)u(y)− u(z)u2(y): (A.7)

Consider three possible cases in (A.5)

1. u(w)¿u(y),
2. u(w)¡u(y),
3. u(w) = u(y).
Case 1: u(w)¿u(y) ⇒ u(x)¿u(z).
From (A.6) u2(x)(u(w)− u(y))¡u(x)(u2(w)− u2(y)), which implies

u2(x)(u(w)− u(y))¡u(x)(u(w)− u(y))(u(w) + u(y));

then

u(x)¡u(w) + u(y): (A.8)

From (A.7) u2(z)(u(w)− u(y))¿u(z)(u2(w)− u2(y)), which implies u2(z)(u(w)−
u(y))¿u(z)(u(w)− u(y))(u(w) + u(y)), then

u(z)¿u(w) + u(y): (A.9)
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From (A.8) and (A.9) we get u(z)¿u(x) which contradicts u(z)¡u(x) obtained
before in (A.5).

Case 2: u(w)¡u(y) ⇒ u(x)¡u(z).
From (A.6) u2(x)(u(w)− u(y))¡u(x)(u2(w)− u2(y)), which implies

u(x)¿u(w) + u(y): (A.10)

From (A.7) u2(z)(u(w)− u(y))¿u(z)(u2(w)− u2(y)), which implies

u(z)¡u(w) + u(y): (A.11)

From (A.10) and (A.11) we get u(z)¡u(x) which contradicts u(z)¿u(x).
Case 3: u(w) = u(y).
From (A.6) u2(x)u(y)− u(x)u2(y)¿�2¿ u2(x)u(y)− u(x)u2(y) which contradicts

�¿ 0.

Proof of Theorem 10. (i) P is irreOexive. Since �1(x; x)= �(x)�(x)= �2u2(x)¿ 0; then
�1(x; x)¿ 0 = u(x)− u(x). Thus x MPx.
(ii) P satis1es strong intervality. Assume on the contrary that xPy∧zPw∧x MPw∧z MPy.

Then

u(x)− u(y)¿�2u(x)u(y); (A.12)

u(z)− u(w)¿�2u(z)u(w); (A.13)

u(x)− u(w)6 �2u(x)u(w); (A.14)

u(z)− u(y)6 �2u(z)u(y); (A.15)

(A.12) and (A.14) imply that

u(y)¡
u(x)

1 + �2u(x)
6 u(w) ⇒ u(y)¡u(w);

(A.13) and (A.15) imply that

u(w)¡
u(z)

1 + �2u(z)
6 u(y) ⇒ u(w)¡u(y);

a contradiction.
(iii) P is semitransitive. Assume on the contrary that xPy∧ yPz ∧ x MPw∧w MPz. Then

u(x)− u(y)¿�2u(x)u(y); (A.16)

u(y)− u(z)¿�2u(y)u(z); (A.17)

u(x)− u(w)6 �2u(x)u(w); (A.18)

u(w)− u(z)6 �2u(w)u(z); (A.19)



194 F. Aleskerov, Y. Masatlio�glu / Discrete Applied Mathematics 127 (2003) 181–197

(A.16) and (A.18) imply that

u(y)¡
u(x)

1 + �2u(x)
6 u(w):

Hence u(y)¡u(w); add �2u(w)u(y) to both sides,

�2u(w)u(y) + u(y)¡u(w) + �2u(w)u(y);

from this (�2u(w) + 1)u(y)¡u(w)(1 + �2u(y)), we obtain

u(y)
1 + �2u(y)

¡
u(w)

1 + �2u(w)
:

At the same time, (A.17) and (A.19) imply that

u(y)
1 + �2u(y)

¿
u(w)

1 + �2u(w)
;

i.e., we obtain a contradiction.

Proof of Theorem 12. Any semiorder P can be represented as

P =
n⋃

k=2

[
Ik ×

k−1⋃
m=1

Jm

]
:

Now de1ne {Zm}2n2 s.t.

Zm =
{

Im=2 ∩ Jm=2 if m is even;
I(m−1)=2 ∩ J(m+1)=2 otherwise;

since Ik ∩ Jm = ∅ for all |k −m|¿ 1. The sets Zm are pairwise disjoint and their union
is the set A, i.e.,

⋃2n
m=2 Zm = A; Zk ∩ Zl = ∅ when k �= l. Moreover, it is possible that

Zm is empty for some m.
Now construct the numerical function u(·),
∀x; y∈Zm u(x) = u(y) and denoted it by u(xm), and de1ne another function  (·)

s.t.  (x) = (u(x)=1− �2u(x)) for all x∈A. The functions u(·) and  (·) are determined
recursively starting from u(x2n) assuming �2 = 1=(n+ 1).

u(x2n) = n;  (x2n−1) =
u(x2n) +  (x2n)

2

and

 (xk) =




u(xk+1) + u(xk+2)
2

if k is even;

 (xk+1) + u(xk+2)
2

otherwise;

for all 26 k6 2n− 2:

We would like to note that  (x2n) = u(x2n)=1 − �2u(x2n) = n=1 − (1=(n + 1))n =
n(n+ 1)¿u(x2n).
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Claim. For all k ¡ 2n; u(xk)¡u(x2n).

Proof. First; let us prove u(x2n−1) is less than u(x2n). Assume u(x2n−1)¿ u(x2n);
in other words  (x2n−1)=(1 + �2 (x2n−1))¿  (x2n)=(1 + �2 (x2n)). It implies that
 (x2n−1)+�2 (x2n−1) (x2n)¿  (x2n)+�2 (x2n−1) (x2n). We would have  (x2n−1)¿
 (x2n) in contradiction with the de1nition of  (x2n−1) and the fact that u(x2n)¡ (x2n).
Hence u(x2n−1)¡u(x2n).

 (x2n−2)=(u(x2n−1)+u(x2n))=2 implies u(x2n−1)¡ (x2n−2)¡u(x2n) since u(x2n−1)
¡u(x2n). It can easily be seen that  (x2n−2)¡u(x2n)¡ (x2n−1). Assume u(x2n−2)¿
u(x2n); put di0erently  (x2n−2)=(1+�2 (x2n−2))¿  (x2n)=(1+�2 (x2n)). It implies that
 (x2n−2)¿  (x2n). It is contradiction. So u(x2n−2)¡u(x2n).

Assume u(xt)¡u(x2n) for all 2n−2¿t¿k−1 and show u(x2n)¿u(xk−1). Assume
u(x2n)6 u(xk−1). For the case when k is even,  (xk) = (u(xk+1) + u(xk+2))=2 implies
 (xk)¡u(x2n)¡ (x2n). Meanwhile, u(x2n)6 u(xk−1) gives us  (x2n)6  (xk) that
contradicts the previous result. Hence u(xk)¡u(x2n). For odd k;  (xk) = ( (xk+1) +
u(xk+2))=2 and  (xk+1)¡u(x2n) imply that  (xk)¡u(x2n)¡ (x2n). By the same rea-
soning explained above, u(xk)¡u(x2n). Therefore, u(xk)¡u(x2n) for all 26 k6 2n.
This proves the claim. We would like to stress the fact that u(xk) and  (xk) are clearly
positive by construction.
The claim shows that 1− �2u(xk) is always greater than zero for all 26 k6 2n.
Let us derive two inequalities which will be useful later.

u(xk)¡u(xl) ⇔  (xk)¡ (xl) for 26 k; l6 2n: (A.20)

Indeed;  (xk)¡ (xl) ⇔ u(xk)
1− �2u(xk)

¡
u(xl)

1− �2u(xl)

⇔ u(xk)− �2u(xl)u(xk)¡u(xl)− �2u(xl)u(xk)

⇔ u(xk)¡u(xl):

Another inequality is

 (xm)¡u(xk)¡ (xl) ⇔ xkPxm ∧ xk MPxl (A.21)

Indeed;  (xm)¡u(xk)¡ (xl)

⇔ u(xm)
1− �2u(xm)

¡u(xk)¡
u(xl)

1− �2u(xl)

⇔ u(xm)¡u(xk)− �2u(xm)u(xk) and u(xk)− �2u(xl)u(xk)¡u(xl)

⇔ u(xk)− u(xm)¿�2u(xk)u(xm) and u(xk)− u(xl)¡�2u(xk)u(xl)

⇔ u(xk)− u(xm)¿�1(xk ; xm) and u(xk)− u(xl)¿�1(xk ; xl)

⇔ xkPxm ∧ xk MPxl:

Lemma. If 26 k ¡ l6 2n then u(xk)¡u(xl).



196 F. Aleskerov, Y. Masatlio�glu / Discrete Applied Mathematics 127 (2003) 181–197

Proof.  (x2n−1) = (u(x2n) +  (x2n))=2 and u(x2n)¡ (x2n) imply  (x2n−1)¡ (x2n).
By (A.20), u(x2n−1)¡u(x2n).

 (x2n−2)=(u(x2n−1)+u(x2n))=2 implies u(x2n−1)¡ (x2n−2)¡u(x2n) since u(x2n−1)
¡u(x2n). It can easily be seen that  (x2n−2)¡u(x2n)¡ (x2n−1). By (A.20) u(x2n−2)
¡u(x2n−1).
Assume that k is 1xed and u(xm)¡u(xm+1) for k ¡m6 2n− 1. We need to prove

that u(xk)¡u(xk+1).
For odd, k;  (xk+1)=(u(xk+2)+u(xk+3))=2 and u(xk+2)¡u(xk+3) imply that u(xk+2)

¡ (xk+1). It gives us that u(xk+2)¡ (xk)¡ (xk+1) by construction of  (xk). Hence
u(xk)¡u(xk+1) by (A.20).
For even k; u(xk+1)¡u(xk+2) implies  (xk+1)¡ (xk+2). It gives us u(xk+3)¡

 (xk+1) since  (xk+1)=( (xk+2)+u(xk+3))=2. By  (xk)=(u(xk+1)+u(xk+2))=2; u(xk+1)
¡ (xk)¡u(xk+2)¡u(xk+3)¡ (xk+1) since u(xk+1)¡u(xk+2)¡u(xk+3). Then we
have  (xk)¡ (xk+1). By (A.20), u(xk)¡u(xk+1). Therefore, we can say that u(xk)¡
u(xl) for all 26 k ¡ l6 2n. This proves the statement of the lemma.
Now, let us prove the theorem. It can easily be shown that  is decreasing with

respect to k. Now, we need to prove that the binary relation P has a numerical repre-
sentation via the utility function which was de1ned above. Assume that k ¿ 3 is even,
then we have

 (xk) =
u(xk+1) + u(xk+2)

2
; (A.22)

 (xk−1) =
 (xk) + u(xk+1)

2
: (A.23)

 (xk−1)¡ (xk) and (A.23) imply that u(xk+1)¡ (xk−1). And u(xk+1)¡u(xk+2) and
(A.22) imply that u(xk+1)¡ (xk)¡u(xk+2). Hence

u(xk)¡u(xk+1)¡ (xk−1)¡ (xk)¡u(xk+2) (A.24)

since u(xk) is increasing with respect to k. Then  (xk−2) = (u(xk−1) + u(xk))=2 and
(A.24) imply that

 (xk−2)¡u(xk)¡u(xk+1)¡ (xk−1)¡ (xk): (A.25)

(A.25) and (A.21) imply that xk cannot beat xk−1. Then xk cannot beat xm for
2n¿m¿ k − 1 since  (xk) is increasing with respect to k. We can also say that xk
beats xk−2. Then xk beats xm for 26m6 k − 2 since  (xk) is increasing. They also
imply that xk+1 cannot beat xm for 2n¿m¿k−2 and xk beats xm for 26m6 k−2.
All these cases exhaust the proof.
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